A Foundation Model for Atomistic Materials Chemistry

Mar 1, 2024·
Ilyes Batatia
,
Philipp Benner
,
Yuan Chiang
,
Alin M. Elena
,
Dávid P. Kovács
,
Janosh Riebesell
,
Xavier R. Advincula
,
Mark Asta
,
Matthew Avaylon
,
William J. Baldwin
,
Fabian Berger
,
Noam Bernstein
,
Arghya Bhowmik
,
Samuel M. Blau
,
Vlad Cărare
,
James P. Darby
,
Sandip De
,
Flaviano Della Pia
,
Volker L. Deringer
,
Rokas Elijošius
,
Zakariya El-Machachi
,
Fabio Falcioni
,
Edvin Fako
,
Andrea C. Ferrari
,
Annalena Genreith-Schriever
,
Janine George
,
Rhys E. A. Goodall
,
Clare P. Grey
,
Petr Grigorev
,
Shuang Han
,
Will Handley
,
Hendrik H. Heenen
,
Kersti Hermansson
,
Christian Holm
,
Jad Jaafar
,
Stephan Hofmann
,
Konstantin S. Jakob
,
Hyunwook Jung
,
Venkat Kapil
,
Aaron D. Kaplan
,
Nima Karimitari
,
James R. Kermode
,
Namu Kroupa
,
Jolla Kullgren
,
Matthew C. Kuner
,
Domantas Kuryla
,
Guoda Liepuoniute
,
Johannes T. Margraf
,
Ioan-Bogdan Magdău
,
Angelos Michaelides
,
J. Harry Moore
,
Aakash A. Naik
,
Samuel P. Niblett
,
Sam Walton Norwood
,
Niamh O'Neill
,
Christoph Ortner
,
Kristin A. Persson
,
Karsten Reuter
,
Andrew S. Rosen
,
Lars L. Schaaf
,
Christoph Schran
,
Benjamin X. Shi
,
Eric Sivonxay
,
Tamás K. Stenczel
,
Viktor Svahn
,
Christopher Sutton
,
Thomas D. Swinburne
,
Jules Tilly
,
Cas Van Der Oord
,
Eszter Varga-Umbrich
,
Tejs Vegge
,
Martin Vondrák
,
Yangshuai Wang
,
William C. Witt
,
Fabian Zills
,
Gábor Csányi
· 0 min read
Abstract
Machine-learned force fields have transformed the atomistic modelling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials. We demonstrate the power of the MACE-MP-0 model - and its qualitative and at times quantitative accuracy - on a diverse set problems in the physical sciences, including the properties of solids, liquids, gases, chemical reactions, interfaces and even the dynamics of a small protein. The model can be applied out of the box and as a starting or "foundation model" for any atomistic system of interest and is thus a step towards democratising the revolution of ML force fields by lowering the barriers to entry.
Type
Publication
arXiv