A Foundation Model for Atomistic Materials Chemistry
Mar 1, 2024·,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,·
0 min read
Ilyes Batatia
Philipp Benner
Yuan Chiang
Alin M. Elena
Dávid P. Kovács
Janosh Riebesell
Xavier R. Advincula
Mark Asta
Matthew Avaylon
William J. Baldwin
Fabian Berger
Noam Bernstein
Arghya Bhowmik
Samuel M. Blau
Vlad Cărare
James P. Darby
Sandip De
Flaviano Della Pia
Volker L. Deringer
Rokas Elijošius
Zakariya El-Machachi
Fabio Falcioni
Edvin Fako
Andrea C. Ferrari
Annalena Genreith-Schriever
Janine George
Rhys E. A. Goodall
Clare P. Grey
Petr Grigorev
Shuang Han
Will Handley
Hendrik H. Heenen
Kersti Hermansson
Christian Holm
Jad Jaafar
Stephan Hofmann
Konstantin S. Jakob
Hyunwook Jung
Venkat Kapil
Aaron D. Kaplan
Nima Karimitari
James R. Kermode
Namu Kroupa
Jolla Kullgren
Matthew C. Kuner
Domantas Kuryla
Guoda Liepuoniute
Johannes T. Margraf
Ioan-Bogdan Magdău
Angelos Michaelides
J. Harry Moore
Aakash A. Naik
Samuel P. Niblett
Sam Walton Norwood
Niamh O'Neill
Christoph Ortner
Kristin A. Persson
Karsten Reuter
Andrew S. Rosen
Lars L. Schaaf
Christoph Schran
Benjamin X. Shi
Eric Sivonxay
Tamás K. Stenczel
Viktor Svahn
Christopher Sutton
Thomas D. Swinburne
Jules Tilly
Cas Van Der Oord
Eszter Varga-Umbrich
Tejs Vegge
Martin Vondrák
Yangshuai Wang
William C. Witt
Fabian Zills
Gábor Csányi
Abstract
Machine-learned force fields have transformed the atomistic modelling of materials by enabling simulations of ab initio quality on unprecedented time and length scales. However, they are currently limited by: (i) the significant computational and human effort that must go into development and validation of potentials for each particular system of interest; and (ii) a general lack of transferability from one chemical system to the next. Here, using the state-of-the-art MACE architecture we introduce a single general-purpose ML model, trained on a public database of 150k inorganic crystals, that is capable of running stable molecular dynamics on molecules and materials. We demonstrate the power of the MACE-MP-0 model - and its qualitative and at times quantitative accuracy - on a diverse set problems in the physical sciences, including the properties of solids, liquids, gases, chemical reactions, interfaces and even the dynamics of a small protein. The model can be applied out of the box and as a starting or "foundation model" for any atomistic system of interest and is thus a step towards democratising the revolution of ML force fields by lowering the barriers to entry.
Type
Publication
arXiv